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Introduction
• Permutation-based Combinatorial Optimization Problems (COPs), e.g. 

• Traveling Salesman Problem (TSP)
• Flow Shop Scheduling Problem (FSP)
• Quadratic Assignment Problem (QAP)

• Traditionally these problems are modeled as integer programs and solved 
with mathematical programming solvers such as
• CPLEX
• Gurobi

• Motivated by the promise of quantum computing, the idea of first 
formulating the problems as Ising models (or equivalently, quadratic 
unconstrained binary optimization problems (QUBO) is gaining traction 
which are amenable to quantum annealing-based solutions
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Motivation
• Besides special hardware such as D-Wave’s quantum annealer, there 

are there are technology companies have developed fast QUBO 
solvers (QS) such as 
• Alpha-QUBO (a software solver)
• Fujitsu’s Digital Annealer (DA)

• These QUBO solvers face several challenges including hardware 
limitations and no guarantee of solution quality
• The data describing the QUBO varies greatly in magnitude
• Choosing the right penalty coefficient
• Feasibility of the solution returned by QUBO solver
• Problem size constraints
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Contributions
• Data-scaling: to enhance solution quality, convert an instance to one with 

smaller cost variations while preserving the ranking of solutions for the original 
problem instance for QUBO with permutation constraint and prove that our 
data scaling method applies to all permutation-based problems.

• Projection: project infeasible solutions obtained by the QUBO solver to feasible 
solutions using a polynomial-time weighted assignment algorithm.
• Study the effects of the penalty parameters in the QUBO formulation to 

balance between quality and feasibility.
• Experimental results: apply these techniques on DA QUBO solver to solve large 

Euclidean TSP (E-TSP) and QAP instances via a divide-and-conquer process. We 
respectively evaluate our approach by comparing the Concorde solver (for E-
TSP) and the qbsolv framework running the same QUBO solver (for QAP).
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Permutation-based Problems
• A permutation-based combinatorial optimization problem involves 

permuting 𝑛 objects to minimize a certain objective function. Such 
problems can be modeled as minimizing a quadratic objective 
function of the following form:
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Permutation QUBO
• We can convert this formulation to an unconstrained QUBO model 

by squaring the constraint violations and adding them to the 
original objective function provided if 𝑨 is large enough:
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Data Scaling

Equivalent quadratic objective 
function with permutation constraint

(smaller variation in magnitude)

Data Scaling

• Pick an index and change the magnitude
• Magnitudes are chosen to minimize the variation of the resulting objective function.

∀𝑢, 𝑖, 𝑣 ∈ 1,… , 𝑛 7𝑄&,!,',% = 9
𝑄&,!,',% 𝑖𝑓 𝑗 ≠ ̂𝚥
𝑄&,!,',% + Δ% 𝑖𝑓 𝑗 = ̂𝚥

Given quadratic objective function 
with permutation constraint

(Large variation in magnitude)
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Penalty Parameter Tuning
• Tuning the penalty parameter 𝐴 in Equation 3 is an important step 

in ensuring solution feasibility and quality for the original problem.
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Penalty Parameter Tuning
• In solving combinatorial optimization problems using a QS, each call 

to the QS takes substantial time, and hence we need to perform 
online tuning with as few calls to the QS as possible
• Online parameter search

• Hyperopt and Optuna: model-based Bayesian approaches
• Particle Swarm Optimization (PSO): model-free evolutionary algorithm

• Statistical sampling: Draw the parameter values from the fitted 
distributions based on the collected data by learning the average value and 
standard deviation of penalty parameter of the problem instance that 
performs well
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Projection to the Feasible Space
• To restore feasibility of the original constrained problem, we solve the 

following optimization problem where 𝑧 ∈ 0,1 !×! is the infeasible 
solution returned from QS

• Here 𝑧 would be a given constant and hence this reduces to the standard 
Weighted Assignment Problem which can be solved in polynomial time 
with the Hungarian algorithm.
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Application to TSP and QAP
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E-TSP
• QUBO formulation for E-TSP is min

#
𝐻$ 𝑥 + 𝐴 ⋅ 𝐻%(𝑥) where

• Notations
• 𝑑&' is the distance between city 𝑢 and city 𝑣
• 𝑥',% is the indicator variable that the city 𝑣 is the 𝑗-th city to be visited. And we 

require total 𝑛) variables for an 𝑛-city instance.
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Stitching the Clusters for E-TSP
• Let 𝑘 be the number of clusters and largest cluster size be |𝑉!|.
• We then define the least cost flip value Δ"# between all cluster pairs 

to be the least cost of performing 2-opt to stitch the two clusters 𝑖
and 𝑗 together. The time complexity is 𝑂(𝑘$ 𝑉! $).
• To determine the ordering of stitching clusters, we solve a minimum 

cost Hamiltonian path problem by reusing our QUBO E-TSP model 
presented above (except it seeks a minimum Hamiltonian path  
instead of cycle) with Δ"# on the edges.
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QAP
• Given 𝑛 facilities and 𝑛 locations, the flow matrix (𝑓"#) denoting the 

flow quantity between facilities 𝑖 and 𝑗 , and a distance matrix 
𝑑%& which denotes the distance (weight) between locations 𝑘 and 𝑙, 
the QAP is to find an assignment of facilities to locations that 
minimizes the weighted flow.
• The total flow can be written as a QUBO with indicator variable 𝑥"#

denoted that facility 𝑖 is assigned to location 𝑗:
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Clustering Scheme for QAP
• For each facility, we associate it with the sum of the flow values that 

is associated with the facility, we then sort them in an increasing 
order. 
• For each location, we associate it with the sum of the distances that 

is associated with the location, we then sort them in a decreasing 
order.
• We then match the facility that is associated with the high flow 

value with the location of low distance. We then compute the 
product value of the scores and perform a 1-D clustering on the 
scores.
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Numerical Experiments
• Investigate the effect of data scaling on TSP solution quality
• Compare the relative performance on TSP solution quality under 

different parameter tuning approaches.
• Benchmark our approach to solve TSP. First, we compare the relative 

performance with direct QS call and with the popular TSP solver 
Concorde on TSPLIB as well as hard TNM instances. We also 
compare the relative performance when using an exact solver 
(CPLEX) directly instead of a heuristic QS.
• Compare the performance of our approach with qbsolv (running 

DA) on QAP instances. As baselines, we also compare against best 
published results on those instances.
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Effect of Data Scaling on TSP
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Effect of Parameter Tuning on TSP
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Comparison with Other Approaches on TSP
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Comparison with qbsolv on QAP
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Conclusion
• Three techniques to improve the quality of solution of QS.

• Data-scaling
• Penalty parameter tuning
• Projection

• These techniques can be used in a divide-and-conquer framework to solve large 
instances of combinatorial optimization problems.

• Experimentally, our approach yields solutions with very small optimality gaps on E-TSP 
instances (comparable with dedicated solver Concorde), and outperforms qbsolv, the 
state-of-the-art QUBO divide and conquer framework on QAP instances, with faster 
run time.

• Our study shows that by using a divide-and-conquer framework along with our 
techniques, it outperforms the execution environment where we feed the problem to 
the QS directly.

• Our proposed ideas in this paper is agnostic to QUBO solvers, one could implement QS 
on a quantum hardware to derive a hybrid quantum-classical approach.


